
Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 1 of 61

Optimizing the FreeBSD IP and TCP Stack

André Oppermann <andre@FreeBSD.org>
Sponsored by TCP/IP Optimization Fundraise 2005

EuroBSDCon 05
Basel, 27. November 2005

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 2 of 61

FreeBSD has gained fine grained locking in the network stack throughout the
5.x-RELEASE series cumulating in FreeBSD 6.0-RELEASE.

Hardware architecture and performance characteristics have evolved significantly
since various BSD networking subsystems have been designed and implemented.

This talk gives a detailed look into the implementation and design changes in
FreeBSD 7-CURRENT to extract the maximum network performance from the
underlying hardware.

About

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 3 of 61

Many common assumptions people made in the VAX days no longer hold true.

Many still commonly accepted rules of thumb no longer hold true.

Don’t assume anything.

Profile, don’t speculate!

In German we say: “Wer misst, misst Mist”.

There are lies, damn lies and statistics.

This Presentation and the paper is following the layers of the OSI stack starting
from the physical layer.

General

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 4 of 61

What is “performance”?

Performance can be measured and presented in many different ways. Some are
meaningful and realistic, some are nice but unimportant in the big picture.

Focus on the right metrics and overall goal. Don’t just focus on one little aspect
which may not help a lot overall.

Find a good trade-off between short-cut optimizations.

Sound design with future proof system architecture.

Properly analyze the big picture and then to decide if and how to re-implement a
particular part of the system.

Performance - A Definition

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 5 of 61

Many times micro optimizations should not be done or are done prematurely.

Avoid architecture and layering violations preventing future changes or portability
to other or newer platforms.

Not everything that is true today will continue to be true in a few years.

Performance - A Definition

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 6 of 61

Two primary performance measures exist: Throughput and Transaction
performance.

Throughput is about how much of raw work can be processed in a given time
interval.

Transaction performance is about how many times an action can be
performed in a given time interval.

It is important to note is that both of these properties have different limitations
and scaling behavior.

Many workloads are limited by either throughput or transactions, not both.

Performance - A Definition

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 7 of 61

Operating system guys have very little influence.

We can predict that the hardware engineers are pushing the envelope.

More speed over various metallic copper pairs, optical fibers and over the air.

In the copper and optically wired world we are approaching 10 gigabits per
second speeds as a commodity in a single stream.

40 gigabits per second is available in some high end routers already but not yet
on machines FreeBSD is capable of running on.

It is only a matter of time until it will arrive there too.

Physical Layer

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 8 of 61

The data link the world has pretty much consolidated itself to Ethernet
everywhere.

Ethernet is a packet format (called frame on this layer) with a frame payload size
from 64 bytes to 1500 bytes.

Gigabit Ethernet and faster have larger frame sizes – called jumbo frames – of up
to 16 kilobytes.

Link Layer - Ethernet

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 9 of 61

Ethernet packet payload vs. PPS vs. net throughput:

Link Layer

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 10 of 61

When a frame is received by a network interface it has to be transferred into the
main memory of the system.

Only there the CPU may access and further process it.

This process is called DMA (direct memory access) where the network adapter
writes the received frame into a predetermined location in the system memory.

The first bottleneck encountered is the bus between network adapter and system
memory.

Link Layer - DMA

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 11 of 61

PCI vs. PCI-X vs. PCI-Express

Link Layer - System Bus

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 12 of 61

Good:

Full wire speed on the ethernet and on the system interface side.

Advanced features like IP, TCP and UDP checksum offloading and interrupt
mitigation.

Bad:

DMA alignment restrictions.

Bugs that make advanced features unuseable. IP, TCP and UDP
checksumming is often not correctly implemented and gives wrong results for
certain bit patterns.

Link Layer - Network adapters

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 13 of 61

After DMA the CPU has to look at packet headers.

CPU’s run internally at many times the speed of their external system memory.

Packet came freshly from the network and don’t have a chance to be in the cache
memories.

CPU has to access slow system memory and to wait for a cache line to be
transferred.

This time is entirely lost time and occurs for every packet that enters the system
at least once.

Depending on the cache line size it may occur a second time when further TCP
and UDP header are examined.

Link Layer - Packet Handling

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 14 of 61

Execution stall and cache latency:

Link Layer - Cache Miss

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 15 of 61

Aware of this situation CPU designers have introduced a feature called “cache
prefetching” whereby the programmer signals the CPU that it will access a certain
memory region very soon.

The CPU can then pre-load one or more cache line sizes worth of data into the
fast caches before they are actually accessed and thus avoids a full execution stall
waiting for system memory.

This prefetch command is executed on the packet headers the very moment the
network stack becomes aware of the new packet avoiding a cache stall.

FreeBSD 7-CURRENT is gaining generic kernel infrastructure to support these
cache prefetch instructions in a first implementation for Intel’s Pentium 3,
Pentium 4, Pentium M and AMD’s Athlon, Athlon64 and Opteron series of CPUs.

Link Layer - Prefetching

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 16 of 61

Masked execution stall with prefetch:

Link Layer - Prefetch + cache

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 17 of 61

With the packet in system memory the network hardware doesn’t play a role
anymore and we are squarely in the domain of the operating system network
stack.

First the network code does basic IP header integrity checks.

Next the packet is run through the firewall code. All firewall packages insert
themself into the packet flow through a generic mechanism called PFIL hooks.

FreeBSD 7-CURRENT the PFIL hook implementation is getting replaced with a
lock-free but SMP safe function pointer list featuring atomic writes for changes
making read locks unnecessary.

Network Layer - PFIL

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 18 of 61

The next step is to determine whether the packet is for this host or if it has to be
forwarded (routed) to some other system.

The determination is made by comparing the destination address of the packet to
all IP addresses configured on the system.

The destination address comparison used to loop through all interfaces structures
and all configured IP address on them.

This became very inefficient for larger number of interfaces and addresses.
Already in FreeBSD 4 a hash table with all local IP addresses has been introduced
for faster address compares.

Packets for a local IP addresses are discussed later.

Network Layer - Routing

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 19 of 61

For packets that have to be forwarded, a routing table lookup on the destination
address has to be performed.

The routing table contains a list of all known networks and a corresponding next
hop address to reach them.

This table is managed by a routing daemon application implementing a routing
protocol like OSPF or BGP.

At the core of the Internet is a zone called DFZ (default free zone) where all
globally reachable IPv4 networks are listed.

At the time of writing the DFZ has a size of 175,000 network entries.

Network Layer - Routing

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 20 of 61

CAIDA graph:

Network Layer - DFZ

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 21 of 61

IP routing uses a system of longest prefix match called CIDR (classless
inter-domain routing).

Each network is represented by a prefix and a mask expressed in consecutive
enabled bits showing the number of relevant bits for a routing decision.

Such a prefix looks like this:

62.48.0.0/19 whereas 62.48.0.0 is the base aligned network address and /19
is how many bits from the MSB are to be examined.

Any prefix may have a more specific prefix covering only a part of its range or it
may be a more specific prefix to an even larger, less specific one.

The most specific entry in the routing table for a destination address must win.

Network Layer - CIDR

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 22 of 61

Wikipedia CIDR graphs:

Network Layer - CIDR

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 23 of 61

The CIDR system makes a routing table lookup more complicated as not only the
prefix has to be looked up but also the mask has to be compared for a match.

A trie (reTRIEval algorithm) with mask support must be used.

The authors of the BSD IP stack opted for a generic and well understood
PATRICIA (Practical Algorithm to Retrieve Information Coded in Alphanumeric)
trie algorithm.

The advantage of the PATRICIA trie is its depth compression where it may skip a
number of bits in depth when there is not branch in them.

Network Layer - Routing Table

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 24 of 61

When a lookup is done on this tree it travels along the prefix bits as deep as
possible into the tree and then compares the mask and checks if it covers
the destination IP address of the packet.

If not, it has to do backtracking whereas it goes one step back and compares
again until root node of the tree is reached again.

With an entry count of 173,000 and backtracking the PATRICIA trie gets very
inefficient on modern CPU’s and SMP.

A routing entry is very large and doesn’t fit into a single cache line.

For a full DFZ view the BSD routing table consumes almost 50MBytes of kernel
memory.

Network Layer - Routing Table

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 25 of 61

Execution stalls due to slow system memory accesses happen multiple times per
lookup.

The larger the table gets the worse the already steep performance penalty. The
worst case is a stall for every bit, 32 for IPv4.

Other more efficient algorithms exist. For example LC-trie.

Network Layer - Routing Table

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 26 of 61

FreeBSD 7-CURRENT will implement a different but very simple, yet very efficient
routing table algorithm.

It exploits all the positive features of modern CPU’s, very fast integer
computations and high memory bandwidth, while avoiding the negative cache
miss execution stalls.

The algorithm splits the 32 bit IPv4 addresses into four 8 bit strides in which it
has a very dense linear array containing the stride part of the prefix and its mask.
It has to do at most four lookup’s into four strides.

The key to efficiency is cache prefetching, high memory bandwidth and fast
computations.

Network Layer - Routing Table

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 27 of 61

For a lookup it prefetches the first stride and linearly steps through all array
entries at the level computing the match for each of them.

[[trie graph]]

Network Layer - Routing Table

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 28 of 61

On modern CPUs this is extremely fast as it can run in parallel in the multiple
integer execution cores and all data is in the fast caches.

Network Layer - Routing Table

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 29 of 61

The footprint of each entry is very small and the entire table fits into
approximately the same amount of space as the LC-trie. It has a few important
advantages however:

It doesn’t need any locking for lookup. Lookups can happen in parallel on any
number of CPUs and it allows for very easy and efficient table updates.

For writes a tables a write lock is required to serialize all changes.

While a change is made lookups can still continue.

All changes are done with atomic writes in the correct order.

This gives a coherent view of the table at any given point in time.

Network Layer - Routing Table

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 30 of 61

Protocol Control Block Lookup

Packets for a local IP addresses get delivered to the socket selection of their
respective protocol type – commonly TCP or UDP.

The protocol specific headers are checked first for integrity and then it gets
determined if a matching socket exists.

If no match the packet gets dropped and an ICMP error message is sent back.

For TCP packets, now called segments, the socket lookup is complicated.

Transport Layer - PCB Lookup

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 31 of 61

To make a determination where to deliver the packet a hash table is employed.

Prior to the hash table lookup can be made the entire TCP control block list has to
be locked to prevent modifications while the current segment is processed.

The global TCP lock stretches over the entire time the segment is worked on.

This locks out any concurrent TCP segment processing on SMP as only one CPU
may handle a segment at any give point in time.

Transport Layer - TCPCB

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 32 of 61

On one hand this is bad because it limits parallelism.

On the other hand it maintains serialization for TCP segments and avoids spurious
out of order arrivals due to internal locking races between CPUs handling different
segments for the same session.

Transport Layer - TCPCB

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 33 of 61

How to approach this problem in FreeBSD 7-CURRENT is still debated.

One proposed solution is a trie approach similar the new routing table coupled
with a lockless queue in each TCP control block.

When a CPU is processing one segment and has locked the TCPCB while another
CPU has already received the next segment it simply gets attached to the lockless
queue for that socket.

The other CPU then doesn’t has to spin on the TCPCB lock to wait for it to get
unlocked. The first CPU already has the entire TCPCB structure and segment
processing code in the cache and before it exits the lock it checks the queue for
further segments.

Transport Layer - TCPCB

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 34 of 61

TCP guarantees reliable, in-sequence data transport.

To transport data over an IP network it chops up the data stream into segments
and puts them into IP packets.

The network does its best effort to deliver all these packets.

Occasionally it happens that packets get lost due to overloaded links or other
trouble.

Sometimes packets even get reordered and a packet that was sent later may
arrive before an earlier one.

Transport Layer - TCP Reassembly

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 35 of 61

TCP has to deal with all these problems and it must shield the application from
them by handling and resolving the errors internally.

In the packet loss case only a few packets may be lost and everything after it
may have arrived intact.

TCP must not present this data to the application until the missing segments are
recovered.

It asks the sender to retransmit the missing segments using either
duplicate-ACK’s or SACK (selective acknowledges).

In the meantime it holds on to the already received segments in the TCP
reassembly queue to speed up transmission recovery and to avoid re-sending the
perfectly received later segments.

Transport Layer - TCP Reassembly

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 36 of 61

With today’s network speeds and long distances the importance of an efficient
TCP reassembly queue becomes evident as the bandwidth-delay product becomes
ever larger.

Transport Layer - TCP Reassembly

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 37 of 61

A TCP socket may have to hold to as many data in the reassembly queue as the
socket buffer limit provides.

Generally the socket buffers over-commit memory – they don’t have enough
physical memory to fulfill all obligations simultaneously – they may have on all
sockets together.

In addition all network data arrives in mbufs and mbuf clusters (2kbytes in size),
no matter how much actual payload is within such a buffer.

Transport Layer - TCP Reassembly

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 38 of 61

The current FreeBSD TCP reassembly code is still mostly the same as in 4.4BSD
Net/2.

It simply creates a linked list of all received segments and holds on to every mbuf
it got data in.

Tis no longer efficient with large socket buffers and provides some attack vectors
as well as for memory exhaustion by deliberately sending many small packets
while forgetting the first one.

Replicate this for a couple of connections and the entire server runs out of
available memory.

We need something better!

Transport Layer - TCP Reassembly

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 39 of 61

In FreeBSD 7-CURRENT the entire TCP reassembly queue gets rewritten and
replaced with an adequate system.

The new code coalesces all continues segments together and stores them as only
one block in the segment list. This way only a few entries have to be searched
in worst case if a new segments arrives.

This covers a large part of the malicious attack scenarios.

To thwart all other attacks described in research papers only the number of
missing segments (holes) has to be limited.

Transport Layer - TCP Reassembly

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 40 of 61

TCP Offload Engines (TOE)

With TOE the clear disadvantage is the operating system has no longer any
control over the TCP session, its implementation and advanced features.

FreeBSD has a very good TCP and IP stack and we most likely will not support full
TCP offloading.

Additionally the benefits are limited even with TOE as the operation system still
has to copy all data from and to the application from kernel space.

Transport Layer - TOE

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 41 of 61

TCP segmentation offloading (TSO)

TSO is more interesting and to some extent supported on most gigabit ethernet
network cards.

Unfortunately often bugs in edge cases or with certain bit patterns make this
feature useless.

Complicating the matter is the functioning of the general network stack in
FreeBSD where every data stream is stored on mbuf clusters.

The mbuf clusters are a little bit larger than the normal ethernet MTU of 1500
bytes.

Transport Layer - TSO

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 42 of 61

Thus we already have a direct natural fit which lessens the need and benefit of
TSO.

There are cases where TSO may be beneficial nonetheless.

For example high speed single TCP connection transfers may receive a boost from
lesser CPU processing load.

Current experience with existing implementations is inconclusive and for FreeBSD
7-CURRENT we will do further research to judge the possible advantages against
the complications of implementing support for TSO.

An implementation of TSO for FreeBSD’s network stack is a non-trivial endeavor.

Transport Layer - TSO

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 43 of 61

T/TCP Version 2

T/TCP stands for “Transactional TCP”.

This name however is misleading as it doesn’t have anything to do with
transactions commonly understood from databases, file systems or other
applications.

Rather it tries to provide reliable transport that is faster than normal TCP for short
connections found in many applications, most notably HTTP.

It was observed early on that the single largest latency block in short TCP
connections comes from the three way handshake.

Session Layer - T/TCPv2

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 44 of 61

T/TCP optimizes this by doing a three way handshake only the first time any two
hosts communicate with each other.

Allfollowing connections send their data/request segment directly with the first
SYN packet.

Session Layer - T/TCPv2

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 45 of 61

Session Layer - T/TCPv2

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 46 of 61

Old T/TCP implemented to RFC1644 is very weak on security and the TCP part of
the implementation is complicated.

Thus T/TCP never gained any meaningful traction in the market as it was unfit for
any use on the open Internet.

The only niche it was able to establish itself to some extent is the satellite
gateway market where the RTT is in the range of 500ms and everything cutting
connection latency is very valuable.

Session Layer - T/TCPv2

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 47 of 61

T/TCPv2 and will be first implemented in FreeBSD 7-CURRENT as an experimental
feature.

The original connection count is replaced with two 48bit random values (cookies)
exchanged between the hosts.

The client cookie, is initialized by the client for all connections anew when it
issues the SYN packet.

This cookie is then transmitted with every segment from the client to the server
and from the server to client.

It adds 48bits of further true entropy to the 32bit minus window size to protect
the TCP connection from any spoofing or interference attempts.

Session Layer - T/TCPv2

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 48 of 61

This comes at very little cost with only 8 bytes overhead per segment and a single
compare upon reception of a segment.

It is not restricted to T/TCPv2 and can be used with any TCP session as a very
light-weight alternative to TCP-MD5.

Session Layer - T/TCPv2

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 49 of 61

The other cookie is a server cookie which is transmitted from the server to the
client in the SYN-ACK response to the first connection.

The first connection is required to go through the three way handshake too. This
cookie value is remembered by the client and server and must be unique plus
random for every client host.

The client then sends it together with the SYN packet already containing data on
subsequent connections to qualify for a direct socket like in original T/TCP.

Unlike the previous implementation it will not wait for the application to respond
but send a SYN-ACK right away to notify the client of successful reception of the
packet.

Session Layer - T/TCPv2

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 50 of 61

The two random value cookies make T/TCPv2 (and TCP with the client cookie)
extremely resistant against all spoofing attacks.

The only way to trick a T/TCPv2 server is by malicious and cooperating clients
where the master client obtains a legitimate server cookie and then distributes it
to a number of other clients which then issue spoofed SYN request under the
identity of the master client.

Session Layer - T/TCPv2

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 51 of 61

Skipped in this paper.

TCP/IP does not have a presentation layer.

Presentation Layer

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 52 of 61

In the application space HTTP web servers are a prime example of being very
dependent on the underlying operating system and exercising the network stack
to its fullest extent.

A HTTP server serving static objects – web pages, images and other files – is
entirely dominated by operating system overhead and efficiency.

Along the HTTP request handling path a number of potentially latency inducing
steps occur.

First in line are the listen(2) and accept(2) system calls dealing with all incoming
connections.

Application Layer - HTTP Server

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 53 of 61

FreeBSD implements an extension to a socket in listen state called accept filter
which may be enabled with a setsockopt(2) call.

The accf_http(9) filter accepts incoming connections but waits until a full HTTP
request has been received by the server until it signals the new connection to the
application.

Normally this would happen right after the ACK to the SYN-ACK has been received
by the server. In the average case this saves a round-trip between kernel and
application.

Application Layer - Accept Filter

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 54 of 61

All new incoming connections receive their own socket file descriptor and the
application has to select(2) or poll(2) on them to check for either more request
data to read or more space in the socket to send.

Both calls use arrays of sockets which have to be re-initialized every time a call to
these function is made.

With large numbers of connections this causes a lot of overhead in processing
and becomes very inefficient.

Application Layer - select/poll

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 55 of 61

FreeBSD has introduced an event driven mechanism called kqueue(2) to
overcome this limitation.

With kqueue the application registers a kernel event on the socket file descriptor
and specifies which events it is interested in.

The registered event is active until it is cancelled (or the socket goes away).

Whenever a specified event is triggered on any registered event, the event is
added to an aggregated event queue for this application from which it can read
the events one after the other.

This programming model is not only highly efficient but also very convenient for
server application programmers and is made easily available in a portable library
called libevent.

Application Layer - kqueue

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 56 of 61

Poll vs. kqueue:

Application Layer - kqueue

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 57 of 61

Once the request has been fully received the HTTP server parses it for the
requested file name and starts a lookup in the file system with stat(2).

It is an often overlooked point of undesired blocking and latency when the file
path and directory entry are not already in the file system or buffer cache.

Reads from the disk may have to be initiated and during that time the application
will block in the kernel and can’t perform any other work as the stat(2) system
call can’t be performed in a non-blocking way.

To avoid this stall in the main loop of the application it is beneficial to perform the
stat(2) outside of the main loop and distribute it among a number of pthread(2)s
or pre-fork(3)ed process children.

Application Layer - stat

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 58 of 61

Normally the file content is read into the application and then written out
on the socket again.

This however causes the file content to be copied two times between the kernel
and application.

The sendfile(2) system call offers a direct path from the file system to the
network socket.

With sendfile(2) the application specifies an optional header and footer which is
sent with the file, the file descriptor of the opened file, the length and the offset
in the file to be sent.

Here again the sendfile(2) system call may block if not all file content is in the file
system or buffer cache causing.

Application Layer - sendfile

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 59 of 61

Sendfile(2) offers an option to immediately return with an EWOULDBLOCK error
message signaling the direct unavailability of the file content.

The application then may use the same approach as with stat(2) and distribute it
to either a pthread or pre-forked process child for further processing keeping the
main loop going.

FreeBSD 7-CURRENT will continue to improve the internal efficiency of the
existing optimization functions and may implement further methods as
outlined in the references in my paper.

Application Layer - sendfile

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 60 of 61

The author wants to thank all sponsors of the TCP/IP Optimization Fundraise
2005 for making a lot of optimization work in the FreeBSD kernel
possible!

A full list of all donors and their contribution is available at

http://people.freebsd.org/~andre/tcpoptimization.html

Business Layer

Optimizing the FreeBSD IP and TCP Stack - EuroBSDCon 05 - 27. November 2005 - <andre@FreeBSD.org> Page 61 of 61

That’s it. Any questions?

Download this paper at
http://people.freebsd.org/~andre/

